R/LearnerRegrForecastAutoArima.R
mlr_learners_regr.auto_arima.Rd
Auto ARIMA model Calls forecast::auto.arima from package forecast.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("forecast.auto_arima")
mlr_learnerslrn("forecast.auto_arima")
Id | Type | Default | Levels | Range |
d | integer | NA | \([0, \infty)\) | |
D | integer | NA | \([0, \infty)\) | |
max.q | integer | 5 | \([0, \infty)\) | |
max.p | integer | 5 | \([0, \infty)\) | |
max.P | integer | 2 | \([0, \infty)\) | |
max.Q | integer | 2 | \([0, \infty)\) | |
max.order | integer | 5 | \([0, \infty)\) | |
max.d | integer | 2 | \([0, \infty)\) | |
max.D | integer | 1 | \([0, \infty)\) | |
start.p | integer | 2 | \([0, \infty)\) | |
start.q | integer | 2 | \([0, \infty)\) | |
start.P | integer | 2 | \([0, \infty)\) | |
start.Q | integer | 2 | \([0, \infty)\) | |
stepwise | logical | FALSE | TRUE, FALSE | - |
allowdrift | logical | TRUE | TRUE, FALSE | - |
seasonal | logical | FALSE | TRUE, FALSE | - |
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerForecast
,
mlr_learners_regr.VAR
,
mlr_learners_regr.arima
,
mlr_learners_regr.average
mlr3::Learner
-> mlr3temporal::LearnerForecast
-> LearnerRegrForecastAutoArima
forecast()
Returns forecasts after the last training instance.
h
(numeric(1)
)
Number of steps ahead to forecast. Default is 10.
task
(Task).
new_data
(data.frame()
)
New data to predict on.
learner = mlr3::lrn("forecast.auto_arima")
print(learner)
#> <LearnerRegrForecastAutoArima:forecast.auto_arima>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, forecast
#> * Predict Types: [response], se
#> * Feature Types: numeric
#> * Properties: exogenous, missings, univariate
# available parameters:
learner$param_set$ids()
#> [1] "d" "D" "max.q" "max.p" "max.P"
#> [6] "max.Q" "max.order" "max.d" "max.D" "start.p"
#> [11] "start.q" "start.P" "start.Q" "stepwise" "allowdrift"
#> [16] "seasonal"