Auto ARIMA model Calls forecast::auto.arima from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("forecast.auto_arima")
lrn("forecast.auto_arima")

Meta Information

  • Task type: “forecast”

  • Predict Types: “response”, “se”

  • Feature Types: “numeric”

  • Required Packages: mlr3, forecast

Parameters

IdTypeDefaultLevelsRange
dintegerNA\([0, \infty)\)
DintegerNA\([0, \infty)\)
max.qinteger5\([0, \infty)\)
max.pinteger5\([0, \infty)\)
max.Pinteger2\([0, \infty)\)
max.Qinteger2\([0, \infty)\)
max.orderinteger5\([0, \infty)\)
max.dinteger2\([0, \infty)\)
max.Dinteger1\([0, \infty)\)
start.pinteger2\([0, \infty)\)
start.qinteger2\([0, \infty)\)
start.Pinteger2\([0, \infty)\)
start.Qinteger2\([0, \infty)\)
stepwiselogicalFALSETRUE, FALSE-
allowdriftlogicalTRUETRUE, FALSE-
seasonallogicalFALSETRUE, FALSE-

See also

Other Learner: LearnerForecast, mlr_learners_regr.VAR, mlr_learners_regr.arima, mlr_learners_regr.average

Super classes

mlr3::Learner -> mlr3temporal::LearnerForecast -> LearnerRegrForecastAutoArima

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method forecast()

Returns forecasts after the last training instance.

Usage

LearnerRegrForecastAutoArima$forecast(h = 10, task, new_data = NULL)

Arguments

h

(numeric(1))
Number of steps ahead to forecast. Default is 10.

task

(Task).

new_data

(data.frame())
New data to predict on.

Returns

Prediction.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrForecastAutoArima$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

learner = mlr3::lrn("forecast.auto_arima")
print(learner)
#> <LearnerRegrForecastAutoArima:forecast.auto_arima>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, forecast
#> * Predict Types:  [response], se
#> * Feature Types: numeric
#> * Properties: exogenous, missings, univariate

# available parameters:
learner$param_set$ids()
#>  [1] "d"          "D"          "max.q"      "max.p"      "max.P"     
#>  [6] "max.Q"      "max.order"  "max.d"      "max.D"      "start.p"   
#> [11] "start.q"    "start.P"    "start.Q"    "stepwise"   "allowdrift"
#> [16] "seasonal"