R/LearnerRegrForecastAutoArima.R
mlr_learners_regr.auto_arima.RdAuto ARIMA model Calls forecast::auto.arima from package forecast.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():
mlr_learners$get("forecast.auto_arima")
lrn("forecast.auto_arima")| Id | Type | Default | Levels | Range |
| d | integer | NA | \([0, \infty)\) | |
| D | integer | NA | \([0, \infty)\) | |
| max.q | integer | 5 | \([0, \infty)\) | |
| max.p | integer | 5 | \([0, \infty)\) | |
| max.P | integer | 2 | \([0, \infty)\) | |
| max.Q | integer | 2 | \([0, \infty)\) | |
| max.order | integer | 5 | \([0, \infty)\) | |
| max.d | integer | 2 | \([0, \infty)\) | |
| max.D | integer | 1 | \([0, \infty)\) | |
| start.p | integer | 2 | \([0, \infty)\) | |
| start.q | integer | 2 | \([0, \infty)\) | |
| start.P | integer | 2 | \([0, \infty)\) | |
| start.Q | integer | 2 | \([0, \infty)\) | |
| stepwise | logical | FALSE | TRUE, FALSE | - |
| allowdrift | logical | TRUE | TRUE, FALSE | - |
| seasonal | logical | FALSE | TRUE, FALSE | - |
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners) for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerForecast,
mlr_learners_regr.VAR,
mlr_learners_regr.arima,
mlr_learners_regr.average
mlr3::Learner -> mlr3temporal::LearnerForecast -> LearnerRegrForecastAutoArima
forecast()Returns forecasts after the last training instance.
h(numeric(1))
Number of steps ahead to forecast. Default is 10.
task(Task).
new_data(data.frame())
New data to predict on.
learner = mlr3::lrn("forecast.auto_arima")
print(learner)
#> <LearnerRegrForecastAutoArima:forecast.auto_arima>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, forecast
#> * Predict Types: [response], se
#> * Feature Types: numeric
#> * Properties: exogenous, missings, univariate
# available parameters:
learner$param_set$ids()
#> [1] "d" "D" "max.q" "max.p" "max.P"
#> [6] "max.Q" "max.order" "max.d" "max.D" "start.p"
#> [11] "start.q" "start.P" "start.Q" "stepwise" "allowdrift"
#> [16] "seasonal"