This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
$get("forecast.VAR")
mlr_learnerslrn("forecast.VAR")
Id | Type | Default | Range |
p | integer | 1 | \([0, \infty)\) |
lag.max | integer | NULL | \([1, \infty)\) |
season | integer | NULL | \([1, \infty)\) |
Chapter in the mlr3book: https://mlr3book.mlr-org.com/basics.html#learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).
mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerForecast
,
mlr_learners_regr.arima
,
mlr_learners_regr.auto_arima
,
mlr_learners_regr.average
mlr3::Learner
-> mlr3temporal::LearnerForecast
-> LearnerVAR
forecast()
Returns forecasts after the last training instance.
h
(numeric(1)
)
Number of steps ahead to forecast. Default is 10.
task
(Task).
new_data
(data.frame()
)
New data to predict on.
learner = mlr3::lrn("forecast.VAR")
print(learner)
#> <LearnerVAR:forecast.VAR>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, vars
#> * Predict Types: [response], se
#> * Feature Types: numeric
#> * Properties: exogenous, missings, multivariate
# available parameters:
learner$param_set$ids()
#> [1] "p" "lag.max" "season"