ARIMA model Calls forecast::Arima from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("forecast.arima")
lrn("forecast.arima")

Meta Information

  • Task type: “forecast”

  • Predict Types: “response”, “se”

  • Feature Types: “numeric”

  • Required Packages: mlr3, forecast

Parameters

IdTypeDefaultLevels
orderuntypedc, 0, 0, 0
seasonaluntypedc, 0, 0, 0
include.meanlogicalTRUETRUE, FALSE
include.driftlogicalFALSETRUE, FALSE
biasadjlogicalFALSETRUE, FALSE
methodcharacterCSS-MLCSS-ML, ML, CSS

See also

Other Learner: LearnerForecast, mlr_learners_regr.VAR, mlr_learners_regr.auto_arima, mlr_learners_regr.average

Super classes

mlr3::Learner -> mlr3temporal::LearnerForecast -> LearnerRegrForecastArima

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method forecast()

Returns forecasts after the last training instance.

Usage

LearnerRegrForecastArima$forecast(h = 10, task, new_data = NULL)

Arguments

h

(numeric(1))
Number of steps ahead to forecast. Default is 10.

task

(Task).

new_data

(data.frame())
New data to predict on.

Returns

Prediction.


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerRegrForecastArima$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

learner = mlr3::lrn("forecast.arima")
print(learner)
#> <LearnerRegrForecastArima:forecast.arima>
#> * Model: -
#> * Parameters: list()
#> * Packages: mlr3, forecast
#> * Predict Types:  [response], se
#> * Feature Types: numeric
#> * Properties: exogenous, missings, univariate

# available parameters:
learner$param_set$ids()
#> [1] "order"         "seasonal"      "include.mean"  "include.drift"
#> [5] "biasadj"       "method"