R/ResamplingForecastHoldout.R
mlr_resamplings_forecast_holdout.RdSplits data into a training set and a test set.
Parameter ratio determines the ratio of observation going into the training set (default: 2/3).
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():
mlr_resamplings$get("forecast_cv")
rsmp("forecast_cv")ratio (numeric(1))
Ratio of observations to put into the training set.
as_benchmark_result() to convert to a BenchmarkResult.
Chapter in the mlr3book: https://mlr3book.mlr-org.com/performance.html#sec-resampling
Package mlr3viz for some generic visualizations.
Other resample:
mlr_resamplings_forecast_cv
mlr3::Resampling -> ResamplingForecastHoldout
iters(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.
# Create a task with 10 observations
task = mlr3::tsk("airpassengers")
task$filter(1:10)
# Instantiate Resampling
rfho = mlr3::rsmp("forecast_holdout", ratio = 0.5)
rfho$instantiate(task)
# Individual sets:
rfho$train_set(1)
#> [1] 1 2 3 4 5
rfho$test_set(1)
#> [1] 6 7 8 9 10
intersect(rfho$train_set(1), rfho$test_set(1))
#> integer(0)
# Internal storage:
rfho$instance # simple list
#> $train
#> [1] 1 2 3 4 5
#>
#> $test
#> [1] 6 7 8 9 10
#>